<u>SPATIO-TEMPORAL OCCURRENCES OF LANDSLIDES</u> <u>IN THE HIMACHAL HIMALAYA</u>

Roshani Devi*

Abstract:

Landslides are destructive geological processes that have globally caused deaths and destruction to property worth billion dollars. Landslide occurrences are widespread and prolific in India covering more than 15 per cent of the total area. These are mostly concentrated in the Himalayan belt, parts of Meghalaya Plateau, Nilgiri Hills, Western and Eastern Ghats. The slope failure in the hilly terrain is due to geological processes and events. The frequency and magnitude of slope failure also increased due to anthropogenic activities such as road construction, deforestation and urban expansion. Keeping all these problems in mind research focusses on the Himachal Himalaya as it falls under very high risk zone in case of landslides and comprise of three objectives. They are: a) to record the temporal incidences of landslides in Himachal Himalaya, b) to analyse the spatial temporal pattern of landslides in the Himachal Himalaya. In this work an attempt has been made to collect data on landslides incidences and damage from the secondary sources like Geological Survey of India, Building Material and Technology Promotion council from Ministry of Urban Affairs and annual reports of disastrous weather events from Indian Meteorological Department. The methodologies adopted for data analysis are simple tabulations, bar diagrams, statistical and mapping techniques to represent the Landslide vulnerability of the Himachal Himalaya. The analysis of the study reveals that there is increase in the number of landslides. The spatial pattern of landslide incidences is positively correlated with susceptibility zones in terms of geology, geomorphology and anthropogenic activities.

^{*} Assistant Professor in Geography, Aditi Mahavidyalaya (University Of Delhi), Bawana, Delhi-110039

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Physical and Social Sciences http://www.ijmra.us

Introduction

Landslide, a frequently occurring natural hazard in the hilly terrains of India, shows preponderance of activity during the monsoon period from July to September and after the snow fall from January to March. The strong earthquakes also cause triggering of landslide, particularly in regions marked by critically disposed and unstable slopes. On a rough estimate, nearly 15% of India's landmass or 0.49 million sq. km area is prone to landslide hazard.

Landslide are the downslide movement of soil, debris rock, resulting from natural causes, vibrations, overburden of rock material, removal of lateral supports, change in water content of rock or soil bodies, blocked drainage etc. in himachal Pradesh the mass movement varies in magnitude from soil creep to landslide. Solifluction (form of creep in which snow or water saturated rocks move down the slopes) is another type of mass movement ta is common on the higher snow covered ranges of the state. The problem of landslide is common and frequent in Himachal Pradesh. Almost every year the state is affected by one or more major landslide affecting society in many ways. Loss of life, damage to houses, roads, and means of communication, agricultural land, and floods are some of the consequences of landslides in the region. Flash floods, particularly in narrow river gorges are the cause of some of the major landslides in Himachal Pradesh. These flash floods trigger landslides in the region, eventually jeopardising the stability of the hill as a whole.

The vulnerability of the geologically young, unstable and fragile rocks of the state has increased many times in the recent past due to various unscientific developmental activities. Deforestation, unscientific road construction, terracing and water intensive agricultural practices, encroachment on steep hill slopes are the anthropogenic activities which have increased the intensity and frequency of landslides. Among the man-induced causes, road construction in the hilly terrain is more responsible for landslides. The quantum of the damage by unscientific road construction may be judged by scientific research, which states that one kilometre of road construction in the Himalayas need removal of 60000 cubic metres of debris. Due to this and other anthropogenic activities, landslides have become a regular occurrence in the state, especially during the rainy season. Malling, nathpa, powai in the Spiti and Satluj Valley in Kinnaur district and Marlu, Bhang, Chhyal and Mandh in the Beas catchment are the areas where landslides occur every year.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Physical and Social Sciences http://www.ijmra.us

<u>ISSN: 2249-5894</u>

Objective

a) To record the incidences of landslides in Himachal Himalaya.

b) To analyse the spatial pattern of landslides in the Himachal Himalaya.

Data base and Methodology

In this work an attempt has been made to collect data on landslides incidences and damage from the secondary sources like Geological Survey of India, Building Material and Technology Promotion council from Ministry of Urban Affairs and annual reports of disastrous weather events from Indian Meteorological Department. The methodologies adopted for data analysis are simple tabulations, bar diagrams, statistical and mapping techniques to represent the Landslide vulnerability of the Himachal Himalaya.

Results and Discussion

It is evident from the temporal data on the landslides given in the Table 1.0 that the landslides and their impact is on increase. The first landslide incidence recorded in Pawari in 1962 on NH-22. After that Chakki-Dalhousie landslide occurred in 1965 on 67-68 kilometre Pathankot – Dalhousie road. In 1973-74, the Pangi and Telangi landslide occurred 371 kilometre on NH-22 because of the road cut and toe erosion by Pangi Nala. The Naina Devi slide occurred in1978 due to heavy rain on the Naina Devi ridge on the Bilaspur. A major landslide in the Malling occurred 459 kilometre on NH-22 resulted by saturation along shear zones, high discharge and road cut. The Khadra Dhang slide recorded opposite to the Akpa village in 1981 due to percolation of rain and snow melt and toe cut. In the 1985, landslide reported from two places known as Thangi slide and Nacher slide both on the NH-22. The Soldan Khad slide took place on the NH-22 due to heavy rain and flash flood. In the 1989 the two landslides occurred in the Baspa valley due to road cut and toe cut by the river. In the 1990, almost 4 landslides recorded, out of which three occurred on the NH-22 and other on the Beas River as shown in the table given. The landslide of Himachal Himalaya enumerates over 350 incidences based on the Geological Survey of India. Majority of the Landslides have been recorded during the preparation of landslides zonation maps in the Satluj, Ravi, and Beas river valleys in Kullu, Mandi, Kinnaur, Chamba and Kangra districts. Many of these slides have been investigated during the geo-technical investigations of

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Physical and Social Sciences http://www.ijmra.us

Volume 4, Issue 4

<u>ISSN: 2249-5894</u>

river valley projects and for feasibility study of road alignment and rural and urban settlements. The spatial pattern on the map indicates that the worst affected road alignment runs along Ravi river between Gehra and Braumaur in Chamba district. The road alignment in the stretch passes through jointed rock mass belonging to Chamba formation represented by interstratified sequence of slates, phyllite and subordinate schist, Manjir formation comprising pebbly, siltstone, slate and bands of limestone and Katarigali formation composed of interstratified sequence of slates, phyllites, siltstone and beds of thinly bedded limestone. Nearly 50 slope failures have been recorded along this road in a stretch of about 30 kilometers. The Hindustan Tibet road (NH-22) alignment between Jeori and Khab passing through slope wash, debris, jointed gneiss and compact granites of Rakccham Granite formation is another sector which is widely affected by landslide in Kinnaur district in Satluj Valley. The nine major landslides in this stretch are at Poo, Mailing, Urni, Han, Akpa, Shillu, Shiasu, Dabling and Chango. Shimla has frequently experiencing landslides, with slips and subsidences commonly occurring within overburden material and adversely affecting roads and unsoundly founded constructions. Soil creep and landslides have also occurred in Dalhousie town, whereby closely jointed slates are covered with thick overburden consisting of fragments of slate embedded clayey matrix. The material is loose and incompetent.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Physical and Social Sciences http://www.ijmra.us

Volume 4, Issue 4

<u>ISSN: 2249-5894</u>

Name of Slide	Location	Type of Slide	Date of	Cause /Triggering Factor	Damage/Loss	Remedial
Molling Slide	450km on NUL 22	Composito slido voru	Initiation	Saturation along shaan	1000m mod	measures taken
Maning Side	439KIII 0II NH-22	active	slide in 31 July	zones, high discharge and	damaged	seeping water
			1991	road cut	Guinageo	from the slide
						body
Ropagad Slide	Left bank of	Debris slide and creep	August 1990	High wind speed and snow	Road damaged	None
	Ropagad on NH- 22	active		melt		
Thangi Slide	389km on NH-22	Debris slide, flow and	March 1985	Toe cut by Thangi nala and	100m road	Retaining
		rock fall, active		wedge failure	damaged	structures
Khadra Dhang	Opposite of Akpa	Translational debris	August 1981	Percolation of wind and	130m road	Alignment of
Slide	Village	slide, active		snow melt and toe cut	damaged	NH-22 changed
Pangi Slide or	371km on NH-	Rational cum	1973 and major	Road cut and toe erosion by	300m road	Retaining
Telangi Slide	22	translational slides.	slide in 19	Pangi nala	damaged	structures,
		Active	January 1975			drainage
						works, and
Pawari Slide	367km on NH-22	Rational cum	1962 major	Five road cut in slide body	1000m road	Retaining
		translational slides.	slide in 1977	and numerous seepage zones	damaged	structures at
		Active				number of
Sanni Slida	Pagna Satlui	Pational aum	August 1080	Road out in unconsolidated	1000 X 700m	places
Sapin Side	confluence near	translational slides.	August 1989	mass and toe cut by Baspa	orchard of Sapni	Sapni
	Karchham	Active		river	village damaged	abandoned
D (11)			1000			
Barua Slide	Near Barua	Planer debris slide	August 1989	Toe cut, dip slope and	440 X 4000m hill	None
	vallev	and fock fail. Active		minuation	slope damaged	
Urni Rockfall	347km on NH -	Rock fall very active	Reactivated in	Road Cut and blasting	250m road	Retaining
	22 near Tapri		1992	caused joint failure	damaged, 5	structures
			in the second		persons died	
Jakhari Slida	289km on NIL	Translational debris	February 1002	Water seepage and read out	500m road	New road out
Jakilari Shue	286km 011 N11 - 22	slide	reoluting 1995	water seepage and road cut	damaged	New Ioad cut
N I CI'I	2201				500 1	
Nachar Slide	329km on NH –	Debris slide, very	Old slide	Springs in middle slopes and	500m road	Retaining
	22	active	1985	Totad widening	danger for village	suuctures
					upper slopes	
Soldan Khad Slide	NH – 22	Debris slide active	1988 flash flood	Heavy rain and flash flood	200m road	Realignment of
			in Soldan khad		damaged, 32	road. bridge
		V /		1 2 9	cattle' died	constructed
Noine Davi Slide	Noine devi ridge	Potational slida	August 1079	Hoour Doin	142 houses and	Poteining
Nama Devi Silde	Bilaspur	Kotational since	August 1978	neavy Kalli	road section	structures.
	Dhasput				washed away	concrete pads
					n abrica a naj	and anchors.
Chhaki-Dalhousie	67-68 km	Road and hill slope	1965	Ingress of water from	70mm road	Retaining wall
Slide	Pathankot-	subsidence	1905	springs and rain	subsided	Ketanning wan
Shae	Dalhousie road	subsidence		springs and rain	subsided	
					0.0477.40	
Luggar Bhatti slide	2km north of	Toppling-cum- debris	September 12,	Infiltration of water and toe	0.96 X 10	None
	Kullu along left	Tall	1995	cut during road widening	unconsolidated	
	valik of Beas				dislodged 65	
	11001				neonle died	
					people died	

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Physical and Social Sciences http://www.ijmra.us April 2014

ISSN: 2249-5894

Source: Sah and Virdi, 1991; Virdi et al., 1995; Sah et al., 1996;Bartarya et al.1996; Raju and Jalote, 1980; Sah and Mazari, 1998 and Reports of Geological Survey of India

Volume 4, Issue 4

The total recorded incidences of landslides revealed that there are maximum landslides in the Beas and Ravi valleys of the district Kangra and Satluj valley of the district Kinnaur. Out of the total landslides the mode of failure is mostly debris slide, wedge failure followed by rock fall and planar failure.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Physical and Social Sciences http://www.ijmra.us

96

Conclusion

The hills and mountains of Himachal Pradesh are liable to suffer landslides during monsoon and also high intensity earthquakes. The vulnerability of the geologically young and not so stable steep slopes in various Himalayan ranges, has been increasing at a rapid rate in the recent decades due to inappropriate human activity like deforestation, road cutting, terracing and changes in agricultural crops requiring more intense watering etc. The devastating landslides mentioned herein point out to the need for more intensive scientific studies and engineering measures focused on the problem of landslides. It is necessary to prepare zoning maps of landslides and rock fall prone areas through detail geological and geotechnical studies. The landslide prone areas should be avoided while locating new settlements or building, and those which are already occupied, should either be resettled or protective measures be adopted.

Reference/Bibliography

Bartarya, S.K, Virdi N.S and Sah, M.P (1996), Landslide Hazards: Some case studies from satluj valley, Himachal Pradesh, Himalayan Geology, Vol. 17, pp 193-207

Bhandari, R.K (2004), Landslide Hazard Zonation in Valdiya K.S(ed) coping with natural hazard: Indian Context, The national Academy of sciences, Orient Longman, pp 134-152

Choubey, V.D (1998), Landslide Hazard assessment and Management in Himalayas in International Workshop on landslide Hazard and Risk Assessment and Damage control for sustainable development, Vol.2, New Delhi, pp 114-132

Datye, R.K (2004), Landslide control measures and their efficacy: Case histories etc. in proceedings of International Symposium on landslides, Vol. ii

Gupta, A.K (1997) Effects of Natural Disaster on Road in India, PIARC G2 Group Seminar: Natural Disaster reduction for roads, New Delhi, pp 1-10

Kumar, N., et al (1998), Landslide hazards in the Himalayas – Causes and Preventive Measures in Vol. ii, pp 176-179

Mazari, R.K, Sah, M.P. and Bartanya, S.K. (2003), Policy and Mitigation Strategy of landslides in Himachal Roads in the border Roads Organization Seminar, New Delhi, pp 187-197

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Physical and Social Sciences http://www.ijmra.us

Volume 4, Issue 4

ISSN: 2249-5894

Sah, M.P and Bartarya S.K. (2004), Landslide Hazards in the Himalaya: Strategy for their management in Valdiya K.S(ed) coping with natural hazard: Indian Context, The national Academy of sciences, Orient Longman, pp 165-179

Sah, M.P and Mazari, R.K. (1998), anthropogenically Accelerated mass movement, Kullu Valley, Himachal Pradesh, India, Geomorphology, Vol.26, pp 123-128

Satyanarayana, D and Cheema, H.S, (1998), Landslides- Causes, Control and Remedial measures in Vol.1, pp 359-366

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Physical and Social Sciences http://www.ijmra.us